数学学习的一个重要方法,就是化未知为已知,把陌生问题,转化为熟悉的问题。
我们已经把小学时学的数:正整数、正分数和0,扩展到负整数、负分数,进而知道了什么是有理数:整数和分数(正数、负数和0)统称为有理数。
我们小学学过四则运算,现在在有理数范围内,四则运算的法则是怎么样的呢?
因为有了负数,我们就需要对在有负数参与的运算中,加以讨论。
同学们思考这点,我向你借(收入)1元钱记为:+1,还(支出)你1元钱记为:-1
当我借钱1元又如数还钱1元后,这时候我没钱了,结果就是0
所以,(+1)+(-1)=0,同理:(+a)+(-a)=0
那么,这时候,就能把有理数的加法,转化为小学学过的正数和0的加法了:只要先确定符号即可。
一、两个负数相加:举个简单的例子:(-2)+(-3)=-5,这个能理解:借给别人2元钱记为-2,又借给别人3元钱记为-3,那么总共借给别人5元钱,记为-5.这样我们就得出了两个负数相加,结果还是负数,只要再把就绝对值相加就可以了。
也就是说,同为负数相加,我们先判断符号,两个负数相加结果还是负数,然后把绝对值相加。分两步:
1、判断符号是负号
2、再把绝对值相加
二、再来看一个正数和一个负数相加的情况。
(+3)+(-2)=1这是仿照上面理解得到的。分解(+3)为(+2)+(+1)
(+3)+(-2)=(+1)+(+2)+(-2)=(+1)
先判断符号是正的,然后3-2=1
(-3)+(+2)=-1同理。
由此我们得到有理数加法法则:
同号两数相加,取相同的符号,并把绝对值相加。
异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加仍得这个数.
这里要注意互为相反数的两数相加得零。
这节课我们又学了一种数学思想方法:转化的思想。把有理数加法,转化为小学学过的正数和0的加减法。只不过多了一步:判断符号。
仍然运用了数学中分类讨论的方法:1、同号相加;2、异号相加;3、和0相加。
而异号两数相加,又分为两种情况:绝对值相等时;绝对值不等时。
同学们在学习中,都要注意归纳,我们学了什么知识,用了什么方法,慢慢地我们即学会了知识,又掌握了方法。
实际上今天还涉及到一种方法:由特殊推广到一般。
有理数加法法则之前的内容,就是由具体的、特殊的,推出了法则,这就是由特殊到一般。
注意设定
很直观吧
讨论一下
要理解并记住法则
开始要像例题这样知道理由
做做练习吧
习题也不难
好好想想
带括号的了
用字母表示
直接算,数字很大
这样算是不是就很清楚
在水上还是水下呢,多少米处?
有没有简便算法呢?
都要会做,熟能生巧
这个很有趣啊
本文来自网络,不代表「专升本要什么条件_专升本要几年_成人高考专升本_山东专升本信息网」立场,转载请注明出处:http://www.sdzsb8.cn/zsxx/79211.html